类欧几里得算法

先考虑一个简单的问题 $$f(a,b,c,n)=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor$$ 我们这样来解决 $$ \begin{aligned} \\&f(a,b,c,n) \\&=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor \\&=f(a\%c,b\%c,c,n)+\sum_{i=0}^{n}(i\lfloor\frac{a}{c}\rfloor+\lfloor\frac{b}{c}\rfloor) \\&=f(a\%c,b\%c,c,n)+\frac{n(n+1)}{2}\lfloor\frac{a}{c}\rfloor+(n+1)\lfloor\frac{b}{c}\rfloor \\ \\&令m=\lfloor\frac{an+b}{c}\rfloor \\&则f(a,b,c,n) \\&=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor \\&=\sum_{i=0}^n\sum_{j=1}^m[\lfloor\frac{ai+b}{c}\rfloor\geq j] \\&=\sum_{i=0}^n\sum_{j=0}^{m-1}[\lfloor\frac{ai+b}{c}\rfloor\geq j+1] \\&=\sum_{i=0}^n\sum_{j=0}^{m-1}[ai+b \geq cj+c] \\&=\sum_{i=0}^n\sum_{j=0}^{m-1}[ai \gt cj+c-b-1] \\&=\sum_{i=0}^n\sum_{j=0}^{m-1}[i \gt \lfloor\frac{cj+c-b-1}{a}\rfloor] \\&=\sum_{j=0}^{m-1}n-\lfloor\frac{cj+c-b-1}{a}\rfloor \\&=nm-f(c,c-b-1,a,m-1) \\&可以开始递归,递归出口 m=0 \end{aligned} $$ 然后我们考虑两个难一点的题目,同时解决这两个问题 $$ \begin{aligned} &h(a,b,c,n)=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor^2 \quad\quad\quad\quad g(a,b,c,n)=\sum_{i=0}^ni\lfloor\frac{ai+b}{c}\rfloor \end{aligned} $$ 先来看h $$ \begin{aligned} &h(a,b,c,n)\\ =&\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor^2\\ =&\sum_{i=0}^n(\lfloor\frac{(a\%c)i+(b\%c) }{c}\rfloor+\lfloor\frac{a}{c}\rfloor i+\lfloor\frac{b}{c}\rfloor)^2\\ =&\sum_{i=0}^n(\lfloor\frac{(a\%c)i+(b\%c) }{c}\rfloor^2+\lfloor\frac{a}{c}\rfloor^2i^2+\lfloor\frac{b}{c}\rfloor^2+2\lfloor\frac{a}{c}\rfloor i\lfloor\frac{b}{c}\rfloor+2\lfloor\frac{(a\%c)i+(b\%c) }{c}\rfloor\lfloor\frac{a}{c}\rfloor i+2\lfloor\frac{(a\%c)i+(b\%c) }{c}\rfloor\lfloor\frac{b}{c}\rfloor\\ =&h(a\%c,b\%c,c,n)+2\lfloor\frac{a}{c}\rfloor g(a\%c,b\%c,c,n)+2\lfloor\frac{b}{c}\rfloor f(a\%c,b\%c,c,n)+\lfloor\frac{a}{c}\rfloor^2\frac{n(n+1)(2n+1)}{6}+2\lfloor\frac{a}{c}\rfloor \lfloor\frac{b}{c}\rfloor\frac{n(n+1)}{2}+(n+1)\lfloor\frac{b}{c}\rfloor^2 \end{aligned} $$ 这里我们只用关心第一项 $$ \begin{aligned} &令m=\lfloor\frac{an+b}{c}\rfloor则\\ &h(a,b,c,n)\\ =&\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor^2\\ =&\sum_{i=0}^n(\sum_{j=1}^m[\lfloor\frac{ai+b}{c}\rfloor\geq j])^2\\ =&\sum_{i=0}^n(\sum_{j=0}^{m-1}[i \gt \lfloor\frac{cj+c-b-1}{a}\rfloor])^2\\ =&\sum_{i=0}^n\sum_{j=0}^{m-1}[i \gt \lfloor\frac{cj+c-b-1}{a}\rfloor]\sum_{k=0}^{m-1}[i \gt \lfloor\frac{ck+c-b-1}{a}\rfloor]\\ =&\sum_{i=0}^n\sum_{j=0}^{m-1}\sum_{k=0}^{m-1}[i \gt \lfloor\frac{cj+c-b-1}{a}\rfloor]*[i \gt \lfloor\frac{ck+c-b-1}{a}\rfloor]\\ =&\sum_{i=0}^n\sum_{j=0}^{m-1}\sum_{k=0}^{m-1}[i \gt max(\lfloor\frac{cj+c-b-1}{a}\rfloor,\lfloor\frac{ck+c-b-1}{a}\rfloor)]\\ =&\sum_{i=0}^n\sum_{j=0}^{m-1}\sum_{k=0}^{m-1}[i \gt max(\lfloor\frac{cj+c-b-1}{a}\rfloor,\lfloor\frac{ck+c-b-1}{a}\rfloor)]\\ =&nm^2-\sum_{j=0}^{m-1}\sum_{k=0}^{m-1} max(\lfloor\frac{cj+c-b-1}{a}\rfloor,\lfloor\frac{ck+c-b-1}{a}\rfloor)\\ =&nm^2-2\sum_{j=0}^{m-1}j\lfloor\frac{cj+c-b-1}{a}\rfloor-\sum_{j=0}^{m-1}\lfloor\frac{cj+c-b-1}{a}\rfloor\\ =&nm^2-2g(c,c-b-1,a,m-1)-f(c,c-b-1,a,m-1) \end{aligned} $$ 推出来了。。。。。
然后我们来怼g $$ \begin{aligned} &g(a,b,c,n)\\ =&\sum_{i=0}^ni\lfloor\frac{ai+b}{c}\rfloor\\ =&\sum_{i=0}^ni\lfloor\frac{(a\%c)i+b\%c}{c}+\lfloor\frac{a}{c}\rfloor i+\lfloor\frac{b}{c}\rfloor\rfloor \\ =&\sum_{i=0}^ni(\lfloor\frac{(a\%c)i+b\%c}{c}\rfloor+\lfloor\frac{a}{c}\rfloor i+\lfloor\frac{b}{c}\rfloor)\\ =&\sum_{i=0}^ni\lfloor\frac{(a\%c)i+b\%c}{c}\rfloor+\sum_{i=0}^n\lfloor\frac{a}{c}\rfloor i^2+\sum_{i=0}^n\lfloor\frac{b}{c}\rfloor i\\ =&\frac{n(n+1)(2n+1)}{6}\lfloor\frac{a}{c}\rfloor +\frac{n(n+1)}{2}\lfloor\frac{b}{c}\rfloor +\sum_{i=0}^ni\lfloor\frac{(a\%c)i+b\%c}{c}\rfloor\\ =&g(a\%c,b\%c,c,n)+\frac{n(n+1)(2n+1)}{6}\lfloor\frac{a}{c}\rfloor +\frac{n(n+1)}{2}\lfloor\frac{b}{c}\rfloor \end{aligned} $$ 同理我们只关心第一项 $$ \begin{aligned} &g(a,b,c,n)\\ =&\sum_{i=0}^ni\lfloor\frac{ai+b}{c}\rfloor\\ =&\sum_{i=0}^n(i\sum_{j=1}^m[\lfloor\frac{ai+b}{c}\rfloor \geq j])\\ =&\sum_{i=0}^n(i\sum_{j=0}^{m-1}[i \gt \lfloor\frac{cj+c-b-1}{a}\rfloor])\\ =&\sum_{i=0}^n\sum_{j=0}^{m-1}i[i \gt \lfloor\frac{cj+c-b-1}{a}\rfloor]\\ =&\sum_{j=0}^{m-1}\sum_{i=\lfloor\frac{cj+c-b-1}{a}\rfloor+1}^ni\\ =&\sum_{j=0}^{m-1}\frac{(n+\lfloor\frac{cj+c-b-1}{a}\rfloor+1)*(n-(\lfloor\frac{cj+c-b-1}{a}\rfloor+1)+1)}{2}\\ =&\sum_{j=0}^{m-1}\frac{(n+\lfloor\frac{cj+c-b-1}{a}\rfloor+1)*(n-\lfloor\frac{cj+c-b-1}{a}\rfloor)}{2}\\ =&\sum_{j=0}^{m-1}\frac{n^2-\lfloor\frac{cj+c-b-1}{a}\rfloor^2+n-\lfloor\frac{cj+c-b-1}{a}\rfloor}{2}\\ =&\frac{n(n+1)m}{2}-\frac{\sum_{j=0}^{m-1}\lfloor\frac{cj+c-b-1}{a}\rfloor^2}{2}-\frac{\sum_{j=0}^{m-1}\lfloor\frac{cj+c-b-1}{a}\rfloor}{2}\\ =&\frac{n(n+1)m}{2}-\frac{h(c,c-b-1,a,m-1)}{2}-\frac{f(c,c-b-1,a,m-1)}{2}\\ \end{aligned} $$ 推完了总结一下 $$ \begin{aligned} &f(a,b,c,n)=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor\\ &h(a,b,c,n)=\sum_{i=0}^n\lfloor\frac{ai+b}{c}\rfloor^2 \\ & g(a,b,c,n)=\sum_{i=0}^ni\lfloor\frac{ai+b}{c}\rfloor \\ \\ &f(a,b,c,n)=f(a\%c,b\%c,c,n)+\frac{n(n+1)}{2}\lfloor\frac{a}{c}\rfloor+(n+1)\lfloor\frac{b}{c}\rfloor\\ &h(a,b,c,n)=h(a\%c,b\%c,c,n)+2\lfloor\frac{a}{c}\rfloor g(a\%c,b\%c,c,n)+2\lfloor\frac{b}{c}\rfloor f(a\%c,b\%c,c,n)+\lfloor\frac{a}{c}\rfloor^2\frac{n(n+1)(2n+1)}{6}+2\lfloor\frac{a}{c}\rfloor \lfloor\frac{b}{c}\rfloor\frac{n(n+1)}{2}+(n+1)\lfloor\frac{b}{c}\rfloor^2\\ &g(a,b,c,n)=g(a\%c,b\%c,c,n)+\frac{n(n+1)(2n+1)}{6}\lfloor\frac{a}{c}\rfloor +\frac{n(n+1)}{2}\lfloor\frac{b}{c}\rfloor\\ \\ &f(a,b,c,n)=nm-f(c,c-b-1,a,m-1)\\ &h(a,b,c,n)=nm^2-2g(c,c-b-1,a,m-1)-f(c,c-b-1,a,m-1)\\ &g(a,b,c,n)=\frac{n(n+1)m}{2}-\frac{h(c,c-b-1,a,m-1)}{2}-\frac{f(c,c-b-1,a,m-1)}{2}\\ \end{aligned} $$
void calfgh_baoli(ll a,ll b,ll c,ll n,ll&f,ll&g,ll&h){
    f=g=h=0;
    for(ll i=0;i<=n;i++) {
        f+=(a*i+b)/c;
        g+=i*((a*i+b)/c);
        h+=((a*i+b)/c)*((a*i+b)/c);
    }
}
// a>=0 b>=0 c>0 n>=0         -> O(lg(a,c))
void calfgh(ll a,ll b,ll c,ll n,ll&f,ll&g,ll&h){
    ll A=a/c,B=b/c,s0=n+1,s1=n*(n+1)/2,s2=n*(n+1)*(2*n+1)/6;
    f=s1*A+s0*B;
    g=s2*A+s1*B;
    h=s2*A*A+s0*B*B+2*s1*A*B-2*B*f-2*A*g;// 先减掉
    a%=c,b%=c;
    ll m=(a*n+b)/c;
    if(m!=0) {
        ll ff,gg,hh; calfgh(c,c-b-1,a,m-1,ff,gg,hh);
        f+=n*m-ff;
        g+=(n*m*(n+1)-hh-ff)/2;
        h+=n*m*m-2*gg-ff;
    }
    h+=2*B*f+2*A*g;//再加上
}