Manacher算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
struct Manacher {//鉴于马拉车算法较复杂,此处有少量修改,
//s[i]=ma[i<<1]
//mp[i]表示以i为中心的最长回文串的半径,且mp[i]-1恰好为此回文串包含原字符串的字符的数量
//可以证明ma字符串所包含的回文串总数=原字符串b所包含的回文串总数+2n+2
static const int maxn = 1e6 + 666;
char ma[maxn << 1];
int mp[maxn << 1], begat[maxn];//begta[i]-> 以i开头的回文串的数量 begin at

void build(char *str) {
int len = strlen(str + 1), l = 0;
ma[l++] = '$';//$#.#.#.#.#.#.#.#
ma[l++] = '#';
for (int i = 1; i <= len; i++) {
ma[l++] = str[i];
ma[l++] = '#';
}
ma[l] = mp[l] = 0;
int mx = 0, id = 0;
for (int i = 0; i < l; i++) {
mp[i] = mx > i ? min(mp[2 * id - i], mx - i) : 1;
while (ma[i + mp[i]] == ma[i - mp[i]])mp[i]++;
if (i + mp[i] > mx) {
mx = i + mp[i];
id = i;
}
}
//for(int i=2;i<=l;i++)palindrome+=mp[i]>>1;//回文串个数

//若不用dalt数组,此后可删掉
for (int i = 1; i <= len; i++)begat[i] = 0;
for (int i = 2; i < l; i++) {
int s = i - mp[i] + 1;//ma串最长回文左端点s
s = (s + 1) / 2;//变为str串最长回文左端点,向上取整,因为str[i]对应smp[i<<1]
int t = s + mp[i] / 2 - 1;//右端点
begat[s]++;
begat[t + 1]--;
}
for (int i = 1; i <= len + 1; i++)begat[i] += begat[i - 1];//+1是为了还原
}
};