structManacher {//鉴于马拉车算法较复杂,此处有少量修改, //s[i]=ma[i<<1] //mp[i]表示以i为中心的最长回文串的半径,且mp[i]-1恰好为此回文串包含原字符串的字符的数量 //可以证明ma字符串所包含的回文串总数=原字符串b所包含的回文串总数+2n+2 staticconstint maxn = 1e6 + 666; char ma[maxn << 1]; int mp[maxn << 1], begat[maxn];//begta[i]-> 以i开头的回文串的数量 begin at
voidbuild(char *str){ int len = strlen(str + 1), l = 0; ma[l++] = '$';//$#.#.#.#.#.#.#.# ma[l++] = '#'; for (int i = 1; i <= len; i++) { ma[l++] = str[i]; ma[l++] = '#'; } ma[l] = mp[l] = 0; int mx = 0, id = 0; for (int i = 0; i < l; i++) { mp[i] = mx > i ? min(mp[2 * id - i], mx - i) : 1; while (ma[i + mp[i]] == ma[i - mp[i]])mp[i]++; if (i + mp[i] > mx) { mx = i + mp[i]; id = i; } } //for(int i=2;i<=l;i++)palindrome+=mp[i]>>1;//回文串个数
//若不用dalt数组,此后可删掉 for (int i = 1; i <= len; i++)begat[i] = 0; for (int i = 2; i < l; i++) { int s = i - mp[i] + 1;//ma串最长回文左端点s s = (s + 1) / 2;//变为str串最长回文左端点,向上取整,因为str[i]对应smp[i<<1] int t = s + mp[i] / 2 - 1;//右端点 begat[s]++; begat[t + 1]--; } for (int i = 1; i <= len + 1; i++)begat[i] += begat[i - 1];//+1是为了还原 } };