自定义线程池
把main看作任务的生产者,把线程看作任务的消费者,这时候模型就建立出来了
于是我们需要一个缓冲区,采取消费正生产者模式,然后让消费者不断消费,并在适当的时候创建新的消费者,如果所有任务都做完了,就取消消费者
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
| package com.wsx;
import org.slf4j.Logger; import org.slf4j.LoggerFactory;
import java.util.ArrayDeque; import java.util.Deque; import java.util.concurrent.atomic.AtomicInteger; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.ReentrantLock;
public class TestThreadPool { public static void main(String[] args) { Logger logger = LoggerFactory.getLogger(ThreadPool.class); ThreadPool threadPool = new ThreadPool(3, 10, 10); for (int i = 0; i < 50; i++) { int finalI = i; threadPool.execute(() -> { logger.debug("{}", finalI); try { Thread.sleep(1); } catch (InterruptedException e) { e.printStackTrace(); } }); } } }
class ThreadPool { private final BlockingQueue<Runnable> blockingQueue; private final AtomicInteger runingSize = new AtomicInteger(0); private final int maxSize; private final long timeout;
public ThreadPool(int maxSize, long timeout, int queueCapcity) { this.maxSize = maxSize; this.timeout = timeout; this.blockingQueue = new BlockingQueue<>(queueCapcity); }
public void execute(Runnable task) { for (int old = runingSize.get(); old != maxSize; old = runingSize.get()) { if (runingSize.compareAndSet(old, old + 1)) { new Thread(() -> threadRun(task)).start(); return; } } blockingQueue.put(task); }
public void threadRun(Runnable task) { for (; task != null; task = blockingQueue.takeNanos(timeout)) { try { task.run(); } catch (Exception e) { e.printStackTrace(); } } runingSize.decrementAndGet(); } }
class BlockingQueue<T> { private final Deque<T> queue = new ArrayDeque<>(); private final ReentrantLock lock = new ReentrantLock(); private final Condition full = lock.newCondition(); private final Condition empty = lock.newCondition(); private final int capcity;
public BlockingQueue(int capcity) { this.capcity = capcity; }
public T takeNanos(long timeout) { lock.lock(); try { while (queue.isEmpty()) { try { if (timeout <= 0) return null; timeout = empty.awaitNanos(timeout); } catch (InterruptedException e) { e.printStackTrace(); } } T t = queue.removeFirst(); full.signal(); return t; } finally { lock.unlock(); } }
public T take() { lock.lock(); try { while (queue.isEmpty()) { try { empty.await(); } catch (InterruptedException e) { e.printStackTrace(); } } T t = queue.removeFirst(); full.signal(); return t; } finally { lock.unlock(); } }
public void put(T element) { lock.lock(); try { while (queue.size() == capcity) { try { full.await(); } catch (InterruptedException e) { e.printStackTrace(); } } queue.addLast(element); empty.signal(); } finally { lock.unlock(); } } }
|
策略模式
当队列满了的时候, 死等,超时等待,让调用者放弃执行,让调用者抛出异常,让调用者自己执行
可以用函数式编程实现