name
DZY Loves Fibonacci Numbers
discription
time limit per test:4 seconds
memory limit per test:256 megabytes
In mathematical terms, the sequence $F_n$ of Fibonacci numbers is defined by the recurrence relation
$F_1 = 1; F_2 = 1; F_n = F_{n - 1} + F_{n - 2} (n > 2)$.
DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: $a_1, a_2, …, a_n$. Moreover, there are m queries, each query has one of the two types:
Format of the query “1 l r”. In reply to the query, you need to add $F_{i - l + 1}$ to each element ai, where l ≤ i ≤ r.
Format of the query “2 l r”. In reply to the query you should output the value of modulo 1000000009 (10^9 + 9).
Help DZY reply to all the queries.
input
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 300000). The second line contains n integers $a_1, a_2, …, a_n (1 ≤ a_i ≤ 10^9)$ — initial array a.
Then, m lines follow. A single line describes a single query in the format given in the statement. It is guaranteed that for each query inequality 1 ≤ l ≤ r ≤ n holds.
output
For each query of the second type, print the value of the sum on a single line.
sample input
4 4
1 2 3 4
1 1 4
2 1 4
1 2 4
2 1 3
sample output
17
12
hint
After the first query, a = [2, 3, 5, 7].
For the second query, sum = 2 + 3 + 5 + 7 = 17.
After the third query, a = [2, 4, 6, 9].
For the fourth query, sum = 2 + 4 + 6 = 12.
toturial
斐波那契数列在模$10^9+7$的时候,可以写成这样的形式 $F_n=276601605(691504013^n − 308495997^n)$因为5是一个二次剩余,于是题目就转化为了区间加上等比数列,区间和查询了,加等比数列我们可以直接记录首项然后合并懒惰标记,注意预处理快速幂就能过了。
code
1 |
|
- 本文作者: fightinggg
- 本文链接: http://fightinggg.github.io/yilia/yilia/PVYFI4.html
- 版权声明: 本博客所有文章除特别声明外,均采用 MIT 许可协议。转载请注明出处!