###name
Operation
###descirption
There is an integer sequence a of length n and there are two kinds of operations:
0 l r: select some numbers from $a_l…a_r$ so that their xor sum is maximum, and print the maximum value.
1 x: append x to the end of the sequence and let n=n+1.
###input
There are multiple test cases. The first line of input contains an integer T(T≤10), indicating the number of test cases.
For each test case:
The first line contains two integers n,m$(1≤n≤5×10^5,1≤m≤5×10^5)$, the number of integers initially in the sequence and the number of operations.
The second line contains n integers a1,a2,…,an$(0≤a_i\lt 2^{30})$, denoting the initial sequence.
Each of the next m lines contains one of the operations given above.
It’s guaranteed that $∑n≤10^6,∑m≤10^6,0≤x\lt 2^{30}$.
And operations will be encrypted. You need to decode the operations as follows, where lastans denotes the answer to the last type 0 operation and is initially zero:
For every type 0 operation, let $l=(l xor lastans)mod n + 1$, $r=(r xor lastans)mod n + 1$, and then swap(l, r) if $l>r$.
For every type 1 operation, let x=x xor lastans.
###output
For each type 0 operation, please output the maximum xor sum in a single line.
###sample input
1
3 3
0 1 2
0 1 1
1 3
0 3 4
###sample output
1
3
###toturial
我们使用线性基,对每一个前缀都建立一个线性基,贪心的选择考后的向量作为基即可,如此则查询T(30),添加值T(30),关键点在于如何通过一个前缀构建另一个前缀的线形基,我们只要保证线形基中的元素有顺序,即某个前缀的基都是相对于这个前缀的后缀最简形式,那么我们就可以在后面进行换基,来构建另一个前缀的基
###code
1 |
|
- 本文作者: fightinggg
- 本文链接: http://fightinggg.github.io/yilia/yilia/PX7PJ2.html
- 版权声明: 本博客所有文章除特别声明外,均采用 MIT 许可协议。转载请注明出处!